Online Energy Auditor Certification Training Course
  • HOME
  • PRACTICE EXAMS
    • BPI PRACTICE EXAMS
    • FREE BPI EXAM QUESTIONS
    • HERS PRACTICE EXAMS
  • NEWBIES
    • WHAT DOES IT LOOK LIKE?
    • HOW DO I DO...?
    • HOW TO CHOOSE A BPI TRAINING CENTER
    • STEP-BY-STEP GUIDE
  • STUDY GUIDES
    • BPI WRITTEN EXAM >
      • Section 1 Building Science Fundamentals >
        • 1a. Basic Terms & Definitions >
          • 1. Airflow in Buildings
          • 2. Equipment Efficiencies
          • 3. Power and Energy
          • 4. Effective Leakage Area
          • 5. Area Weighted R-Value
          • 6. Baseload / Seasonal Energy Use
          • 7. Driving Forces (Including Natural and Mechanical)
          • 8. Behavior of Radiation
          • 9. Thermal Resistance / Transmittance: R and U Values
          • 10. Latent / Sensible Heat
          • 11. Total Equivalent Length
          • 12. Dehumidification / Humidification
          • 13. Convert Pressure Units
          • 14. Thermal Bridges
          • 15. Pressure Boundary
          • 16. Stack Effect
          • 17. Exfiltration and Infiltration
          • 18. Natural / Mechanical Ventilation
          • 19. Net Free Area
          • 20. Input & Output Capacity
          • 21. Peak Electrical Demand
          • 22. Permeability and Perm Rating
          • 23. Standby Loss
          • 24. IAQ (indoor air quality): Moisture, CO, Dust
        • 1b. Principals of Energy, Air & Moisture Thermodynamics >
          • 1. Thermodynamics: Conduction, Convection, Radiation, ΔT
          • 2. Factors That Affect Insulation Performance
          • 3. BPI certification online with BPI practice exams and study guides.
          • 4. Heat Gain / Loss
          • 5. Power and Energy
          • 6. Moisture Transport Mechanisms
          • 7. Identify Areas of Highest Relative Humidity
          • 8. Principles of Combustion
        • 1c. Combustion Safety >
          • 1. Combustion Analysis
          • 2. Carbon Monoxide (CO) Testing
          • 3. Combustion Appliance Venting, Draft, Combustion Air & Sizing
          • 4. Understand Combustion Safety Issues
      • Section 2 Buildings and Their Systems >
        • 2a. Building Components >
          • 1. Identify basic duct configurations and components
          • 2. Identify Basic Hydronic Distribution Configurations and Components
          • 3. Identify Basic Structural Components of Residential Construction
          • 4. Thermal Boundaries and Insulation Applications
          • 5. Basic Electrical Components and Safety Considerations
          • 6. Basic Fuel Delivery Systems and Safety Considerations
          • 7. Basic bulk water management components (drainage plumbing gutters sumps etc)
          • 8. Vapor barriers/retarders
          • 9. Radiant Barrier Principles and Installations
          • 10. Understand Fenestration Types and Efficiencies
          • 11. Understand Issues Involved With Basements, Crawlspaces, Slabs, Attics, Attached Garages, Interstitial Cavities, and Bypasses
          • 12. Understand Issues Involved With Ventilation Equipment
          • 13. Understand Basic Heating / Cooling Equipment Components Controls and Operation
          • 14. Understand Basic DHW Equipment Components Controls and Operation
          • 15. Identify Common Mechanical Safety Controls
          • 16. Identify Insulation Types and R-Values
          • 17. Understand Various Mechanical Ventilation Equipment and Strategies: Spot, ERV, HRV
        • 2b. Conservation Strategies >
          • 1. Appropriate Insulation Applications and Installation Based On Existing Conditions
          • 2. Opportunity for ENERGY STAR Lighting and Appliances
          • 3. Identify Duct Sealing Opportunities and Applications
          • 4. Understand Importance of Air Leakage Control and Remediation Procedures
          • 5. Blower Door-Guided Air Sealing Techniques
          • 6. Water Conservation Devices and Strategies
          • 7. Domestic Hot Water (DHW) Conservation Strategies
          • 8. Heating & Cooling Efficiency Applications
          • 9. Proper Use of Modeling to Determine Heating and Cooling Equipment Sizing and Appropriate Energy
          • 10. Understand the Use of Utility History Analysis in Conservation Strategies
          • 11. Appropriate Applications For Sealed Crawlspaces Basements and Attics
          • 12. Identify / Understand High Density Cellulose
          • 13. Appropriate Applications for Fenestration Upgrades Including Modification or Replacement
        • 2c. Comprehensive Building Assessment Process >
          • 1. Determine Areas of Customer Complaints / Concerns in Interview
          • 2. Understand / Recognize Need For Conducting Appropriate Diagnostic Procedures
          • 3. Interaction Between Mechanical Systems, Envelope Systems and Occupant Behavior
        • 2d. Design Considerations >
          • 1. Appropriate Insulation Applications Based On Existing Conditions
          • 2. Understand Fire Codes as Necessary to Apply Home Performance in a Code-Approved Manner
          • 3. Understand / Recognize Building Locations Where Opportunities for Retrofit Materials
          • 4. Understand Climate Specific Concerns
          • 5. Understand Indoor Environment Considerations for the Environmentally Sensitive
          • 6. Understand Impact of Building Orientation, Landscape Drainage, and Grading
          • 7. Opportunity Potential Renewable Energy Applications: Geothermal, Photovoltaic, Wind
          • 8. Understand Impact of Shading on Heating / Cooling Loads
          • 9. Awareness for Solar Gain Reduction / Solar Gain Opportunities
          • 10. Understand Need for Modeling Various Options For Efficiency Upgrades
      • Section 3 Measurement & Verification of Building Performance >
        • Section 3a Measurement & Verification of Building Performance >
          • 1. Air Leakage Test Results
          • 2. Understand Building Shell / Envelope Leakage
          • 3. Apply Fundamental Construction Mathematics and Unit Conversions
          • 4. Calculate Building Tightness Levels (Minimum Ventilation Requirements)
          • 5. Calculate Heating Degree Days and Cooling Degree Days
          • 6. Identify Proper Appliance and Combustion Appliance Venting
          • 7. Ventilation calculations and strategies
          • 8. Proper methods for identifying / testing fuel leaks
          • 9. Blower door setup, accurate measurement and interpretation of results
          • 10. Combustion Appliance Zone (CAZ): depressurization, spillage, draft, Carbon Monoxide (ambient and flue)
          • 11. Carbon Monoxide (CO) evaluation: ambient
          • 12. Proper applications and use of temperature measuring devices
          • 13. Pressure pan and room to room pressure diagnostics
          • 14. Recognize contributing factors to comfort problems
          • 15. Inspect for areas containing moisture or bulk water in undesirable locations
          • 16. Understand and inspect for basic electric safety (e.g. frayed wires, open boxes, etc)
      • Section 4 BPI National Standards & Project Specifications >
        • 1. Understand applicability content and intent of BPI National Standards – Do no harm, make buildings more healthy, comfortable, durable and energy efficient
        • 2. Recognize need for a professional local/state/national codes evaluation
        • 3. Be able to specify appropriate materials and processes needed for building performance projects
      • Section 5 Analyzing Buildings Systems >
        • 1. Recognize need for air sealing measures and their impact on other building systems
        • 2. Recognize need for mechanical equipment improvements
        • 3. Understand blower door use for identifying critical air sealing areas
        • 4. Apply blower door test results and Building Tightness Limit (minimum ventilation requirements) in development of improvement strategies
        • 5. Using combustion analysis and safety testing results to develop appropriate recommendations
        • 6. Determine appropriate method for assessing wall insulation levels
        • 7. Equipment control strategies for maximizing occupant comfort and minimizing energy consumption
      • Section 6 Conduct and Communications >
        • 6a. Conservation strategies
        • 6b. Personal Safety & Work Practices >
          • 1. Locations in which to identify indoor air quality issues
          • 2. Material Safety Data Sheets
          • 3. Isolation procedures for household pollutants
          • 4. Practice building science within your limits of professional competency
          • 5. Precautions when working around chemical biological and other potential hazards
          • 6. Understand role and responsibilities of the building analyst professional
    • BPI FIELD EXAM >
      • How To Put The House Under Worst Case & CAZ
      • What's What? Pa, CFM, CFM50, CAZ, Draft, Room Pressure
      • What To Know In The Attic
      • What To Know In The House
    • BLOWER DOOR TEST >
      • Manometer Setup
    • BPI BUILDING ANALYST STANDARDS >
      • BPI Standards Decoded
  • ESSENTIALS
    • HELP, I HATE MATH!
    • AUDITOR TO CREW COMMUNICATION
    • COMMON AUDITOR / CREW MISTAKES
    • RUN LIKE HELL
    • CONTACT
  • AFTER THE EXAM
    • START A HOME PERFORMANCE BUSINESS
    • FREE ENERGY AUDITOR MINI COURSE
    • RESOURCES
  • NEWSLETTER
  • BLOG

Passing the BPI Exam With Energy Auditor Training

FREE BPI PRACTICE EXAM

Picture

PUT YOUR HOME PERFORMANCE BUSINESS ON ROCKET FUEL

Picture

ENERGY AUDITOR NEWSLETTER

Get the only Energy Auditor Marketing Newsletter with monthly strategies and tactics to grow your home performance business.
Quick Links

1. BPI Written Exam
2. BPI Field Exam

The main topics of the BPI BA exam are listed out below.  Click on a link that interests you, or you need some brushing up on to learn more on each subject.

1. Building Science Fundamentals
1a. Basic terms and definitions
1b. Principals of energy, air & moisture
1c. Combustion science

2. Buildings and Their Systems
2a. Building components
2b. Conservation strategies
2c. Comprehensive building assessment process
2d. Design considerations

3. Measurement and Verification of Building Performance
3a. Applied diagnostics and troubleshooting

4. BPI National Standards and Project Specifications
4a. Comprehensive building assessment

5. Analyzing Buildings Systems
5a. Comprehensive building assessment
5b. Appliances and lighting

6. Conduct and communications
6a. Conservation strategies

BPI Written Exam - Section 2 Buildings and Their Systems

    1. 17. Understand Various Mechanical Ventilation Equipment and Strategies: Spot, ERV, HRV

"Build it tight and ventilate it right," the building science saying goes.  Which means, today, we want to build homes as tight as possible, and then add controlled mechanical ventilation.  We want to ventilate a home to give occupants enough fresh (outside) air to stay healthy, remove odors, dilute indoor pollutants and lower indoor relative humidity.  Remember the old way to think about home ventilation was that a leaky home breathes, which is true, but counting air leakage as ventilation is bad because that air could be really polluted coming from the crawlspace or attics or completely unconditioned.  There are 4 ways to add mechanical ventilation explained in Section 1.18.  

Mechanical ventilation can be in several different forms:

  1. Spot ventilation.  Spot ventilation includes exhaust fans and range fans to quickly remove pollutants at their source. We can go a step further than just turning on an exhaust fan (which acts like a mini-blower door exhausting house air outside, and bringing in outside air through air leaks) and install a motion sensor activated exhaust fan, or a timer onto the exhaust fan to help take human error (or human lack-of-use) out of the equation.  Exhaust fans are rated with a CFM flow rate.
  2. Whole home exhaust fan.  This is the same idea as an exhaust fan or a blower door, where we depressurize a home and air is forced to enter in through air leakage points.  In the case of a whole house exhaust fan though, homeowners should open their windows to let fresh outside air in while the fan is running.  These can be used as a home cooling system as well in climates that have temperate weather or seasons.  Whole home exhaust fans are rated with a CFM flow rate.
  3. Fresh air duct with dampener on the return plenum.  This is a low end option that works well and qualifies a home for Energy Star Certification.  Every time the AHU kicks on, a small 4" duct brings in fresh outside air on the return side.  The down side is that this air is not conditioned or heated at all, so energy costs go slightly up because the AHU has to work harder.
  4. Energy recovery ventilator (ERV) or heat recovery ventilator (HRV). ERV's and HRV's bring in fresh outside air from a dedicated duct, but the beauty of it is that this unconditioned outside air is precooled or heated by transferring it's line with a dedicated exhaust line from the inside out of the house, which IS conditioned or heated already.  It's like the first shampoo, when washing your hair twice.  These systems are designed to run 24-7 and only add $95 a year to operate and to the heating and cooling costs.  These products are the best way to deliver fresh air ventilation at the lowest possible cost. Use HRV in cold climates with a large number of occupants.  If the home does not have a lot of occupants but is in a cold climate, then use an ERV.  If you are in a hot, humid climate, an ERV is the preferred choice of ventilation.  In mixed climates, either the HRV or ERV will work.  

This ASHRAE Standard 62.2 references ventilation requirements and calculations for homes and is a BPI standard you will need to know for the BPI exam.  

To learn about issues involved with attic ventilation, check out Section 2.12.  

Next Section To 2B

2a. Building Components
  1. Identify basic duct configurations and components
  2. Identify basic hydronic distribution configurations and components
  3. Identify basic structural components of residential construction 
  4. Thermal boundaries and insulation applications 
  5. Basic electrical components and safety considerations 
  6. Basic fuel delivery systems and safety considerations
  7. Basic bulk water management components (drainage plumbing gutters sumps etc) 
  8. Vapor barriers/retarders 
  9. Radiant barrier principles and installations 
  10. Understand fenestration types and efficiencies 
  11. Understand issues involved with basements, crawlspaces, slabs, attics, attached garages, interstitial cavities, and bypasses 
  12. Understand issues involved with ventilation equipment 
  13. Understand basic heating / cooling equipment components controls and operation 
  14. Understand basic DHW equipment components controls and operation 
  15. Identify common mechanical safety controls 
  16. Identify insulation types and R-Values 
  17. Understand various mechanical ventilation equipment and strategies: spot, ERV, HRV 
2b. Conservation Strategies
  1. Appropriate insulation applications and installation based on existing conditions 
  2. Opportunity for ENERGY STAR lighting and appliances 
  3. Identify duct sealing opportunities and applications 
  4. Understand importance of air leakage control and remediation procedures 
  5. Blower door-guided air sealing techniques 
  6. Water conservation devices and strategies 
  7. Domestic Hot Water (DHW) conservation strategies 
  8. Heating & cooling efficiency applications 
  9. Proper use of modeling to determine heating and cooling equipment sizing and appropriate energy use
  10. Understand the use of utility history analysis in conservation strategies 
  11. Appropriate applications for sealed crawlspaces basements and attics 
  12. Identify/understand high density cellulose 
  13. Appropriate applications for fenestration upgrades including modification or replacement 
2c. Comprehensive Building Assessment Process
  1. Determine areas of customer complaints/concerns in interview
  2. Understand / recognize need for conducting appropriate diagnostic procedures including when to refer to a specialist for further investigation
  3. Interaction between mechanical systems, envelope systems and occupant behavior
2d. Design considerations
  1. Appropriate insulation applications based on existing conditions
  2. Understand fire codes as necessary to apply home performance in a code-approved manner.
  3. Understand/recognize building locations where opportunities for retrofit materials and processes are needed to correct problems and/or enhance performance
  4. Understand climate specific concerns
  5. Understand indoor environment considerations for the environmentally sensitive
  6. Understand impact of building orientation, landscape drainage, and grading
  7. Opportunity potential renewable energy applications: geothermal , photovoltaic, wind
  8. Understand impact of shading on heating / cooling loads
  9. Awareness for solar gain reduction in cooling climate/solar gain opportunities in heating climates
  10. Understand need for modeling various options for heating, cooling and DHW applications, as well as other efficiency upgrades
Copyright 2023 Building Science Training Center LLC
For Trainers - License BPI Course Material & Slides
Terms and Conditions