Online Energy Auditor Certification Training Course
  • HOME
  • PRACTICE EXAMS
    • BPI PRACTICE EXAMS
    • FREE BPI EXAM QUESTIONS
    • HERS PRACTICE EXAMS
  • NEWBIES
    • WHAT DOES IT LOOK LIKE?
    • HOW DO I DO...?
    • HOW TO CHOOSE A BPI TRAINING CENTER
    • STEP-BY-STEP GUIDE
  • STUDY GUIDES
    • BPI WRITTEN EXAM >
      • Section 1 Building Science Fundamentals >
        • 1a. Basic Terms & Definitions >
          • 1. Airflow in Buildings
          • 2. Equipment Efficiencies
          • 3. Power and Energy
          • 4. Effective Leakage Area
          • 5. Area Weighted R-Value
          • 6. Baseload / Seasonal Energy Use
          • 7. Driving Forces (Including Natural and Mechanical)
          • 8. Behavior of Radiation
          • 9. Thermal Resistance / Transmittance: R and U Values
          • 10. Latent / Sensible Heat
          • 11. Total Equivalent Length
          • 12. Dehumidification / Humidification
          • 13. Convert Pressure Units
          • 14. Thermal Bridges
          • 15. Pressure Boundary
          • 16. Stack Effect
          • 17. Exfiltration and Infiltration
          • 18. Natural / Mechanical Ventilation
          • 19. Net Free Area
          • 20. Input & Output Capacity
          • 21. Peak Electrical Demand
          • 22. Permeability and Perm Rating
          • 23. Standby Loss
          • 24. IAQ (indoor air quality): Moisture, CO, Dust
        • 1b. Principals of Energy, Air & Moisture Thermodynamics >
          • 1. Thermodynamics: Conduction, Convection, Radiation, ΔT
          • 2. Factors That Affect Insulation Performance
          • 3. BPI certification online with BPI practice exams and study guides.
          • 4. Heat Gain / Loss
          • 5. Power and Energy
          • 6. Moisture Transport Mechanisms
          • 7. Identify Areas of Highest Relative Humidity
          • 8. Principles of Combustion
        • 1c. Combustion Safety >
          • 1. Combustion Analysis
          • 2. Carbon Monoxide (CO) Testing
          • 3. Combustion Appliance Venting, Draft, Combustion Air & Sizing
          • 4. Understand Combustion Safety Issues
      • Section 2 Buildings and Their Systems >
        • 2a. Building Components >
          • 1. Identify basic duct configurations and components
          • 2. Identify Basic Hydronic Distribution Configurations and Components
          • 3. Identify Basic Structural Components of Residential Construction
          • 4. Thermal Boundaries and Insulation Applications
          • 5. Basic Electrical Components and Safety Considerations
          • 6. Basic Fuel Delivery Systems and Safety Considerations
          • 7. Basic bulk water management components (drainage plumbing gutters sumps etc)
          • 8. Vapor barriers/retarders
          • 9. Radiant Barrier Principles and Installations
          • 10. Understand Fenestration Types and Efficiencies
          • 11. Understand Issues Involved With Basements, Crawlspaces, Slabs, Attics, Attached Garages, Interstitial Cavities, and Bypasses
          • 12. Understand Issues Involved With Ventilation Equipment
          • 13. Understand Basic Heating / Cooling Equipment Components Controls and Operation
          • 14. Understand Basic DHW Equipment Components Controls and Operation
          • 15. Identify Common Mechanical Safety Controls
          • 16. Identify Insulation Types and R-Values
          • 17. Understand Various Mechanical Ventilation Equipment and Strategies: Spot, ERV, HRV
        • 2b. Conservation Strategies >
          • 1. Appropriate Insulation Applications and Installation Based On Existing Conditions
          • 2. Opportunity for ENERGY STAR Lighting and Appliances
          • 3. Identify Duct Sealing Opportunities and Applications
          • 4. Understand Importance of Air Leakage Control and Remediation Procedures
          • 5. Blower Door-Guided Air Sealing Techniques
          • 6. Water Conservation Devices and Strategies
          • 7. Domestic Hot Water (DHW) Conservation Strategies
          • 8. Heating & Cooling Efficiency Applications
          • 9. Proper Use of Modeling to Determine Heating and Cooling Equipment Sizing and Appropriate Energy
          • 10. Understand the Use of Utility History Analysis in Conservation Strategies
          • 11. Appropriate Applications For Sealed Crawlspaces Basements and Attics
          • 12. Identify / Understand High Density Cellulose
          • 13. Appropriate Applications for Fenestration Upgrades Including Modification or Replacement
        • 2c. Comprehensive Building Assessment Process >
          • 1. Determine Areas of Customer Complaints / Concerns in Interview
          • 2. Understand / Recognize Need For Conducting Appropriate Diagnostic Procedures
          • 3. Interaction Between Mechanical Systems, Envelope Systems and Occupant Behavior
        • 2d. Design Considerations >
          • 1. Appropriate Insulation Applications Based On Existing Conditions
          • 2. Understand Fire Codes as Necessary to Apply Home Performance in a Code-Approved Manner
          • 3. Understand / Recognize Building Locations Where Opportunities for Retrofit Materials
          • 4. Understand Climate Specific Concerns
          • 5. Understand Indoor Environment Considerations for the Environmentally Sensitive
          • 6. Understand Impact of Building Orientation, Landscape Drainage, and Grading
          • 7. Opportunity Potential Renewable Energy Applications: Geothermal, Photovoltaic, Wind
          • 8. Understand Impact of Shading on Heating / Cooling Loads
          • 9. Awareness for Solar Gain Reduction / Solar Gain Opportunities
          • 10. Understand Need for Modeling Various Options For Efficiency Upgrades
      • Section 3 Measurement & Verification of Building Performance >
        • Section 3a Measurement & Verification of Building Performance >
          • 1. Air Leakage Test Results
          • 2. Understand Building Shell / Envelope Leakage
          • 3. Apply Fundamental Construction Mathematics and Unit Conversions
          • 4. Calculate Building Tightness Levels (Minimum Ventilation Requirements)
          • 5. Calculate Heating Degree Days and Cooling Degree Days
          • 6. Identify Proper Appliance and Combustion Appliance Venting
          • 7. Ventilation calculations and strategies
          • 8. Proper methods for identifying / testing fuel leaks
          • 9. Blower door setup, accurate measurement and interpretation of results
          • 10. Combustion Appliance Zone (CAZ): depressurization, spillage, draft, Carbon Monoxide (ambient and flue)
          • 11. Carbon Monoxide (CO) evaluation: ambient
          • 12. Proper applications and use of temperature measuring devices
          • 13. Pressure pan and room to room pressure diagnostics
          • 14. Recognize contributing factors to comfort problems
          • 15. Inspect for areas containing moisture or bulk water in undesirable locations
          • 16. Understand and inspect for basic electric safety (e.g. frayed wires, open boxes, etc)
      • Section 4 BPI National Standards & Project Specifications >
        • 1. Understand applicability content and intent of BPI National Standards – Do no harm, make buildings more healthy, comfortable, durable and energy efficient
        • 2. Recognize need for a professional local/state/national codes evaluation
        • 3. Be able to specify appropriate materials and processes needed for building performance projects
      • Section 5 Analyzing Buildings Systems >
        • 1. Recognize need for air sealing measures and their impact on other building systems
        • 2. Recognize need for mechanical equipment improvements
        • 3. Understand blower door use for identifying critical air sealing areas
        • 4. Apply blower door test results and Building Tightness Limit (minimum ventilation requirements) in development of improvement strategies
        • 5. Using combustion analysis and safety testing results to develop appropriate recommendations
        • 6. Determine appropriate method for assessing wall insulation levels
        • 7. Equipment control strategies for maximizing occupant comfort and minimizing energy consumption
      • Section 6 Conduct and Communications >
        • 6a. Conservation strategies
        • 6b. Personal Safety & Work Practices >
          • 1. Locations in which to identify indoor air quality issues
          • 2. Material Safety Data Sheets
          • 3. Isolation procedures for household pollutants
          • 4. Practice building science within your limits of professional competency
          • 5. Precautions when working around chemical biological and other potential hazards
          • 6. Understand role and responsibilities of the building analyst professional
    • BPI FIELD EXAM >
      • How To Put The House Under Worst Case & CAZ
      • What's What? Pa, CFM, CFM50, CAZ, Draft, Room Pressure
      • What To Know In The Attic
      • What To Know In The House
    • BLOWER DOOR TEST >
      • Manometer Setup
    • BPI BUILDING ANALYST STANDARDS >
      • BPI Standards Decoded
  • ESSENTIALS
    • HELP, I HATE MATH!
    • AUDITOR TO CREW COMMUNICATION
    • COMMON AUDITOR / CREW MISTAKES
    • RUN LIKE HELL
    • CONTACT
  • AFTER THE EXAM
    • START A HOME PERFORMANCE BUSINESS
    • FREE ENERGY AUDITOR MINI COURSE
    • RESOURCES
  • NEWSLETTER
  • BLOG

FREE BPI PRACTICE EXAM

Picture

PUT YOUR HOME PERFORMANCE BUSINESS ON ROCKET FUEL

Picture

ENERGY AUDITOR NEWSLETTER

Get the only Energy Auditor Marketing Newsletter with monthly strategies and tactics to grow your home performance business.

Passing the BPI Exam With Energy Auditor Training

BPI Written Exam - Section 2 Buildings and Their Systems

  1. 3. Identify Duct Sealing Opportunities and Applications 

Duct sealing is an energy auditors and home performance contractor's bread and butter. It is the upgrade most often done and one of the most cost-effective upgrade in homes with the ductwork in the attic or crawlspace (for homes with ductwork in conditioned space, the most cost-effective upgrade is air sealing).
Duct sealing should be done at all:
Inside the house for flex ductwork
  1. Boot to sheetrock (at drywall gap when you take off a register). This includes the return grille that needs to come off.
  2. Inner flex-to collar connection.
  3. Seal the collar teeth, metal-to-metal connections (coat with a thick layer of mastic so you can't see the collar teeth anymore)
  4. Register box at the seems and nail penetrations.
Inside the house for metal ductwork (round rigid and rectangular)
  1. All the seems and metal straps and any T-connections. For rectangular ductwork use a PVC pipe and attached a brush to the end to reach as far back as you can.
  2. Boot to sheetrock (at drywall gap when you take off a register). This includes the return grille that needs to come off.
  3. If you see flex tying into sheet metal ductwork, seal the flex as you would regularly (flex to collar connections)
In the attic for flex ductwork
  1. At the plenum to collar connections
  2. Collar to flex connections
  3. Flex-to-flex splices
  4. Wye's
  5. Mixing or triangle boxes
  6. Terminals (optional if you are doing inside sealing and can seal the ductwork from the inside)
In the attic for sheet metal ductwork
  1. For round rigid sheet metal, metal screws need to be drilled into all the connections to secure the ductwork
  2. The run of the seem
  3. The metal strapping around the rectangular ductwork
  4. Wrap the ductwork in insulation
For plenums, AHU and elbows - this leakage is the most important because it is closest to the blower motor and under the highest pressure. If you are doing a time a materials contract, always start duct sealing at the unit then work your way out. A 1" hole closer to the unit is not the same as a 1" hole 20 feet downstream.
  1. On AHU, seal the AHU to the plenum on all four sides (the bottom is sometimes hard to reach or gets missed). You can access the bottom side from the inside of the plenum by popping a flex duct off and reaching inside.
  2. On roof mounted package units seal the elbow seams and the folds close to the shingles. On the underside of the elbow there are TWO folds that need to be sealed. You can access half from each side of the elbow or the entire thing by crawling under the package unit. This is another item that commonly gets missed.
  3. For package units you can access the return collar connection in the attic from the roof. Unscrew and remove the access panel on the package unit and you can crawl into the elbow on the return side. Sometimes this is preferable because the return collar in the attic is usually inaccessible because it is so close to the roof studs.
The methods I listed above are the locations that duct sealing should be done. The most common approach is manual hand sealing. I prefer this method because the sealant (Pookie) can be applied thick. Another method is Aeroseal which is ideal for inaccessible ducts and a flat roof home. You can read more about Aeroseal at our review here.

Next Section

2a. Building Components
  1. Identify basic duct configurations and components
  2. Identify basic hydronic distribution configurations and components
  3. Identify basic structural components of residential construction 
  4. Thermal boundaries and insulation applications 
  5. Basic electrical components and safety considerations 
  6. Basic fuel delivery systems and safety considerations
  7. Basic bulk water management components (drainage plumbing gutters sumps etc) 
  8. Vapor barriers/retarders 
  9. Radiant barrier principles and installations 
  10. Understand fenestration types and efficiencies 
  11. Understand issues involved with basements, crawlspaces, slabs, attics, attached garages, interstitial cavities, and bypasses 
  12. Understand issues involved with ventilation equipment 
  13. Understand basic heating / cooling equipment components controls and operation 
  14. Understand basic DHW equipment components controls and operation 
  15. Identify common mechanical safety controls 
  16. Identify insulation types and R-Values 
  17. Understand various mechanical ventilation equipment and strategies: spot, ERV, HRV 
2b. Conservation Strategies
  1. Appropriate insulation applications and installation based on existing conditions 
  2. Opportunity for ENERGY STAR lighting and appliances 
  3. Identify duct sealing opportunities and applications 
  4. Understand importance of air leakage control and remediation procedures 
  5. Blower door-guided air sealing techniques 
  6. Water conservation devices and strategies 
  7. Domestic Hot Water (DHW) conservation strategies 
  8. Heating & cooling efficiency applications 
  9. Proper use of modeling to determine heating and cooling equipment sizing and appropriate energy use
  10. Understand the use of utility history analysis in conservation strategies 
  11. Appropriate applications for sealed crawlspaces basements and attics 
  12. Identify/understand high density cellulose 
  13. Appropriate applications for fenestration upgrades including modification or replacement 
2c. Comprehensive Building Assessment Process
  1. Determine areas of customer complaints/concerns in interview
  2. Understand / recognize need for conducting appropriate diagnostic procedures including when to refer to a specialist for further investigation
  3. Interaction between mechanical systems, envelope systems and occupant behavior
2d. Design considerations
  1. Appropriate insulation applications based on existing conditions
  2. Understand fire codes as necessary to apply home performance in a code-approved manner.
  3. Understand/recognize building locations where opportunities for retrofit materials and processes are needed to correct problems and/or enhance performance
  4. Understand climate specific concerns
  5. Understand indoor environment considerations for the environmentally sensitive
  6. Understand impact of building orientation, landscape drainage, and grading
  7. Opportunity potential renewable energy applications: geothermal , photovoltaic, wind
  8. Understand impact of shading on heating / cooling loads
  9. Awareness for solar gain reduction in cooling climate/solar gain opportunities in heating climates
  10. Understand need for modeling various options for heating, cooling and DHW applications, as well as other efficiency upgrades
Copyright 2021 Building Science Training Center LLC
For Trainers - License BPI Course Material & Slides
Terms and Conditions