Online Energy Auditor Certification Training Course
  • HOME
  • PRACTICE EXAMS
    • BPI PRACTICE EXAMS
    • FREE BPI EXAM QUESTIONS
    • HERS PRACTICE EXAMS
  • NEWBIES
    • WHAT DOES IT LOOK LIKE?
    • HOW DO I DO...?
    • HOW TO CHOOSE A BPI TRAINING CENTER
    • STEP-BY-STEP GUIDE
  • STUDY GUIDES
    • BPI WRITTEN EXAM >
      • Section 1 Building Science Fundamentals >
        • 1a. Basic Terms & Definitions >
          • 1. Airflow in Buildings
          • 2. Equipment Efficiencies
          • 3. Power and Energy
          • 4. Effective Leakage Area
          • 5. Area Weighted R-Value
          • 6. Baseload / Seasonal Energy Use
          • 7. Driving Forces (Including Natural and Mechanical)
          • 8. Behavior of Radiation
          • 9. Thermal Resistance / Transmittance: R and U Values
          • 10. Latent / Sensible Heat
          • 11. Total Equivalent Length
          • 12. Dehumidification / Humidification
          • 13. Convert Pressure Units
          • 14. Thermal Bridges
          • 15. Pressure Boundary
          • 16. Stack Effect
          • 17. Exfiltration and Infiltration
          • 18. Natural / Mechanical Ventilation
          • 19. Net Free Area
          • 20. Input & Output Capacity
          • 21. Peak Electrical Demand
          • 22. Permeability and Perm Rating
          • 23. Standby Loss
          • 24. IAQ (indoor air quality): Moisture, CO, Dust
        • 1b. Principals of Energy, Air & Moisture Thermodynamics >
          • 1. Thermodynamics: Conduction, Convection, Radiation, ΔT
          • 2. Factors That Affect Insulation Performance
          • 3. BPI certification online with BPI practice exams and study guides.
          • 4. Heat Gain / Loss
          • 5. Power and Energy
          • 6. Moisture Transport Mechanisms
          • 7. Identify Areas of Highest Relative Humidity
          • 8. Principles of Combustion
        • 1c. Combustion Safety >
          • 1. Combustion Analysis
          • 2. Carbon Monoxide (CO) Testing
          • 3. Combustion Appliance Venting, Draft, Combustion Air & Sizing
          • 4. Understand Combustion Safety Issues
      • Section 2 Buildings and Their Systems >
        • 2a. Building Components >
          • 1. Identify basic duct configurations and components
          • 2. Identify Basic Hydronic Distribution Configurations and Components
          • 3. Identify Basic Structural Components of Residential Construction
          • 4. Thermal Boundaries and Insulation Applications
          • 5. Basic Electrical Components and Safety Considerations
          • 6. Basic Fuel Delivery Systems and Safety Considerations
          • 7. Basic bulk water management components (drainage plumbing gutters sumps etc)
          • 8. Vapor barriers/retarders
          • 9. Radiant Barrier Principles and Installations
          • 10. Understand Fenestration Types and Efficiencies
          • 11. Understand Issues Involved With Basements, Crawlspaces, Slabs, Attics, Attached Garages, Interstitial Cavities, and Bypasses
          • 12. Understand Issues Involved With Ventilation Equipment
          • 13. Understand Basic Heating / Cooling Equipment Components Controls and Operation
          • 14. Understand Basic DHW Equipment Components Controls and Operation
          • 15. Identify Common Mechanical Safety Controls
          • 16. Identify Insulation Types and R-Values
          • 17. Understand Various Mechanical Ventilation Equipment and Strategies: Spot, ERV, HRV
        • 2b. Conservation Strategies >
          • 1. Appropriate Insulation Applications and Installation Based On Existing Conditions
          • 2. Opportunity for ENERGY STAR Lighting and Appliances
          • 3. Identify Duct Sealing Opportunities and Applications
          • 4. Understand Importance of Air Leakage Control and Remediation Procedures
          • 5. Blower Door-Guided Air Sealing Techniques
          • 6. Water Conservation Devices and Strategies
          • 7. Domestic Hot Water (DHW) Conservation Strategies
          • 8. Heating & Cooling Efficiency Applications
          • 9. Proper Use of Modeling to Determine Heating and Cooling Equipment Sizing and Appropriate Energy
          • 10. Understand the Use of Utility History Analysis in Conservation Strategies
          • 11. Appropriate Applications For Sealed Crawlspaces Basements and Attics
          • 12. Identify / Understand High Density Cellulose
          • 13. Appropriate Applications for Fenestration Upgrades Including Modification or Replacement
        • 2c. Comprehensive Building Assessment Process >
          • 1. Determine Areas of Customer Complaints / Concerns in Interview
          • 2. Understand / Recognize Need For Conducting Appropriate Diagnostic Procedures
          • 3. Interaction Between Mechanical Systems, Envelope Systems and Occupant Behavior
        • 2d. Design Considerations >
          • 1. Appropriate Insulation Applications Based On Existing Conditions
          • 2. Understand Fire Codes as Necessary to Apply Home Performance in a Code-Approved Manner
          • 3. Understand / Recognize Building Locations Where Opportunities for Retrofit Materials
          • 4. Understand Climate Specific Concerns
          • 5. Understand Indoor Environment Considerations for the Environmentally Sensitive
          • 6. Understand Impact of Building Orientation, Landscape Drainage, and Grading
          • 7. Opportunity Potential Renewable Energy Applications: Geothermal, Photovoltaic, Wind
          • 8. Understand Impact of Shading on Heating / Cooling Loads
          • 9. Awareness for Solar Gain Reduction / Solar Gain Opportunities
          • 10. Understand Need for Modeling Various Options For Efficiency Upgrades
      • Section 3 Measurement & Verification of Building Performance >
        • Section 3a Measurement & Verification of Building Performance >
          • 1. Air Leakage Test Results
          • 2. Understand Building Shell / Envelope Leakage
          • 3. Apply Fundamental Construction Mathematics and Unit Conversions
          • 4. Calculate Building Tightness Levels (Minimum Ventilation Requirements)
          • 5. Calculate Heating Degree Days and Cooling Degree Days
          • 6. Identify Proper Appliance and Combustion Appliance Venting
          • 7. Ventilation calculations and strategies
          • 8. Proper methods for identifying / testing fuel leaks
          • 9. Blower door setup, accurate measurement and interpretation of results
          • 10. Combustion Appliance Zone (CAZ): depressurization, spillage, draft, Carbon Monoxide (ambient and flue)
          • 11. Carbon Monoxide (CO) evaluation: ambient
          • 12. Proper applications and use of temperature measuring devices
          • 13. Pressure pan and room to room pressure diagnostics
          • 14. Recognize contributing factors to comfort problems
          • 15. Inspect for areas containing moisture or bulk water in undesirable locations
          • 16. Understand and inspect for basic electric safety (e.g. frayed wires, open boxes, etc)
      • Section 4 BPI National Standards & Project Specifications >
        • 1. Understand applicability content and intent of BPI National Standards – Do no harm, make buildings more healthy, comfortable, durable and energy efficient
        • 2. Recognize need for a professional local/state/national codes evaluation
        • 3. Be able to specify appropriate materials and processes needed for building performance projects
      • Section 5 Analyzing Buildings Systems >
        • 1. Recognize need for air sealing measures and their impact on other building systems
        • 2. Recognize need for mechanical equipment improvements
        • 3. Understand blower door use for identifying critical air sealing areas
        • 4. Apply blower door test results and Building Tightness Limit (minimum ventilation requirements) in development of improvement strategies
        • 5. Using combustion analysis and safety testing results to develop appropriate recommendations
        • 6. Determine appropriate method for assessing wall insulation levels
        • 7. Equipment control strategies for maximizing occupant comfort and minimizing energy consumption
      • Section 6 Conduct and Communications >
        • 6a. Conservation strategies
        • 6b. Personal Safety & Work Practices >
          • 1. Locations in which to identify indoor air quality issues
          • 2. Material Safety Data Sheets
          • 3. Isolation procedures for household pollutants
          • 4. Practice building science within your limits of professional competency
          • 5. Precautions when working around chemical biological and other potential hazards
          • 6. Understand role and responsibilities of the building analyst professional
    • BPI FIELD EXAM >
      • How To Put The House Under Worst Case & CAZ
      • What's What? Pa, CFM, CFM50, CAZ, Draft, Room Pressure
      • What To Know In The Attic
      • What To Know In The House
    • BLOWER DOOR TEST >
      • Manometer Setup
    • BPI BUILDING ANALYST STANDARDS >
      • BPI Standards Decoded
  • ESSENTIALS
    • HELP, I HATE MATH!
    • AUDITOR TO CREW COMMUNICATION
    • COMMON AUDITOR / CREW MISTAKES
    • RUN LIKE HELL
    • CONTACT
  • AFTER THE EXAM
    • START A HOME PERFORMANCE BUSINESS
    • FREE ENERGY AUDITOR MINI COURSE
    • RESOURCES
  • NEWSLETTER
  • BLOG

Passing the BPI Exam With Energy Auditor Training

FREE BPI PRACTICE EXAM

Picture

PUT YOUR HOME PERFORMANCE BUSINESS ON ROCKET FUEL

Picture

ENERGY AUDITOR NEWSLETTER

Get the only Energy Auditor Marketing Newsletter with monthly strategies and tactics to grow your home performance business.

BPI Written Exam - Section 2 Buildings and Their Systems

  1. 5. Blower Door-Guided Air Sealing Techniques 

A blower door is not only useful to measure and quantify air and duct leakage but also to find where the air is entering and leaving a home through unwanted holes during installations.  By pressurizing a house a crew can feel the air coming into the attic through top plate leakage around electrical wire penetrations, leaky exhaust fans, plumbing vents and open wall chases.  If you are in an attic that finding the air leakage is difficult, you should consider running your blower door to locate the exact locations of leaks.  At the same time you can get real time measurements of the leakage reduction and compare it to what your home's MVR is to get the home right at it's BAS sweet-spot.

During the depressurization of a home while the fan is at -50 Pa, throw your tube into a each room and shut the door as you would for a room pressure reading.  Only with the blower door running you are now getting an air leakage reading relative to the room you are measuring.  The higher the number, the more air sealing opportunities exist in that room.  The actual number you get is not important but it should be compared to all the other rooms in the house.  This way you can find if there is a particular room the crew should spend more time air and duct sealing than another.  Not surprisingly the larger the room, the more leakage there will be (master bedrooms have more leakage than a guest bedroom), however you may surprise yourself. You never know until you measure. 

Pressure Mapping

We can measure how well any area of the house (inside, attic, crawlspace or wall cavity) is connected to the outside (is outside) with pressure mapping!

Pressure mapping is a very powerful tool for complex homes with significant air leakage or older homes with enclosed attics (with vaulted ceilings and cubby holes). Here attic space is enclosed behind drywall and you can't tell if the wall cavity has been sealed off at the top plates. These homes are usually going to be balloon framing with open cavities from the basement all the way up to the attic space.  A visual check in the basement will tell you if that's the case if you see lathe and plaster and open wall cavities, you've got a winner. Now you can use your blower door and knowledge of pressure mapping to determine if a wall cavity has been sealed properly or not, and where exactly you should cut drywall to access the cavity rather than cutting blindly and making a bigger mess than you have to.  

For a quick review, check out the section on Pressure Boundaries (1a.15).  

There are several ways to do pressure mapping depending on the questions you have for each home.  Some tests should be done on every house, some only if you have an attached garage for example, but here is a run down of the different pressure mapping tests.  All these test require a manometer and most require the use of a blower door depressurized / pressurized to 50 Pa.

Rules

If you know the pressure reading of one zone, you automatically know the reading of the corresponding zone.  This is because we always have the blower door running at 50 Pa.  It is easier for me to write this out in a formula, where:

Pressure A + Pressure B = 50 Pa
Pressure A is the zone that we choose to get a pressure pan reading from, whether it be an electrical outlet, a small hole we drill in a soffit, the ductwork after we tape all the registers shut and insert our tube or by removing the attic hatch (pressurize so you don't suck insulation)

When measuring pressure boundaries, a zone can be any room, attic, crawlspace, outside or basement.  We always measure a zone with respect to (WRT) another zone.  For example we measure the room pressures of each room with respect to the outside.
Zonal / zone pressure mappingThis tells us if the zone we are measuring is more inside or outside. Zones can be taken out canned lights, electrical outlets, entire rooms or by drilling a small hole in a soffit or wall cavity and sticking our tube in.

0 - 10 Pa = minimal leakage
11 - 39 Pa = confused area. Yes this is a large range but the higher you go, the more leaks or bigger the connect is to the outside
40 - 50 Pa = outside

Next Section

2a. Building Components
  1. Identify basic duct configurations and components
  2. Identify basic hydronic distribution configurations and components
  3. Identify basic structural components of residential construction 
  4. Thermal boundaries and insulation applications 
  5. Basic electrical components and safety considerations 
  6. Basic fuel delivery systems and safety considerations
  7. Basic bulk water management components (drainage plumbing gutters sumps etc) 
  8. Vapor barriers/retarders 
  9. Radiant barrier principles and installations 
  10. Understand fenestration types and efficiencies 
  11. Understand issues involved with basements, crawlspaces, slabs, attics, attached garages, interstitial cavities, and bypasses 
  12. Understand issues involved with ventilation equipment 
  13. Understand basic heating / cooling equipment components controls and operation 
  14. Understand basic DHW equipment components controls and operation 
  15. Identify common mechanical safety controls 
  16. Identify insulation types and R-Values 
  17. Understand various mechanical ventilation equipment and strategies: spot, ERV, HRV 
2b. Conservation Strategies
  1. Appropriate insulation applications and installation based on existing conditions 
  2. Opportunity for ENERGY STAR lighting and appliances 
  3. Identify duct sealing opportunities and applications 
  4. Understand importance of air leakage control and remediation procedures 
  5. Blower door-guided air sealing techniques 
  6. Water conservation devices and strategies 
  7. Domestic Hot Water (DHW) conservation strategies 
  8. Heating & cooling efficiency applications 
  9. Proper use of modeling to determine heating and cooling equipment sizing and appropriate energy use
  10. Understand the use of utility history analysis in conservation strategies 
  11. Appropriate applications for sealed crawlspaces basements and attics 
  12. Identify/understand high density cellulose 
  13. Appropriate applications for fenestration upgrades including modification or replacement 
2c. Comprehensive Building Assessment Process
  1. Determine areas of customer complaints/concerns in interview
  2. Understand / recognize need for conducting appropriate diagnostic procedures including when to refer to a specialist for further investigation
  3. Interaction between mechanical systems, envelope systems and occupant behavior
2d. Design considerations
  1. Appropriate insulation applications based on existing conditions
  2. Understand fire codes as necessary to apply home performance in a code-approved manner.
  3. Understand/recognize building locations where opportunities for retrofit materials and processes are needed to correct problems and/or enhance performance
  4. Understand climate specific concerns
  5. Understand indoor environment considerations for the environmentally sensitive
  6. Understand impact of building orientation, landscape drainage, and grading
  7. Opportunity potential renewable energy applications: geothermal , photovoltaic, wind
  8. Understand impact of shading on heating / cooling loads
  9. Awareness for solar gain reduction in cooling climate/solar gain opportunities in heating climates
  10. Understand need for modeling various options for heating, cooling and DHW applications, as well as other efficiency upgrades
Copyright 2021 Building Science Training Center LLC
For Trainers - License BPI Course Material & Slides
Terms and Conditions